Thermal Management of Transient Power Spikes in Electronics - Phase Change Energy Storage or Copper Heat Sinks?
نویسندگان
چکیده
A transient thermal analysis is performed to investigate thermal control of power semiconductors using phase change materials, and to compare the performance of this approach to that of copper heat sinks. Both the melting of the phase change material under a transient power spike input, as well as the resolidification process, are considered. Phase change materials of different kinds (paraffin waxes and metallic alloys) are considered , with and without the use of thermal conductivity enhancers. Simple expressions for the melt depth, melting time and temperature distribution are presented in terms of the dimensions of the heat sink and the thermophysical properties of the phase change material , to aid in the design of passive thermal control systems. The simplified analytical expressions are verified against numerical simulations, and are shown to be excellent tools for design calculations. The suppression of junction temperatures achieved by the use of phase change materials when compared to the performance with copper heat sinks is illustrated. Merits of employing phase change materials for pulsed power electronics cooling applications are discussed.
منابع مشابه
Transient cooling of electronics using phase change material (PCM)-based heat sinks
Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics ...
متن کاملTransient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)
A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...
متن کاملThermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications
Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents ...
متن کاملExperimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage
The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...
متن کاملAn experimental assessment of nanostructured materials embedded in a PCM-based heat sink for transient thermal management of electronic
In the present paper, an experimental assessment was performed on the transient thermal performance of a heat sink filled by a phase change material (PCM) and PCM embedded with carbon nanofibers (CNFs) and titania (TiO2) nanoparticles as nanostructured materials. In order to enhance the thermal conductivity of PCM, CNFs and TiO2 nanoparticles at different loadings (0.5wt. % and 2 wt.% of CNFs a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016